
Implementing a Generic Radix Trie in Rust

Michael Sproul
University of California, Santa Cruz

University of Sydney

Introduction
Rust is a systems programming language developed by Mozilla Research that is rapidly ap-
proaching its 1.0 release [1]. Built on an imperative core with C-like syntax, Rust also includes
several sophisticated features inspired by the ML family of languages. Notable features include
type generics, traits (similar to Haskell’s type classes), type inference, algebraic data types
and pattern matching. Rust’s status as a systems programming language is established by its
memory management system, which guarantees memory safety without garbage collection. It
achieves this through a system of ownership and borrowing inspired by the Cyclone Program-
ming Language [11].

A trie is a tree data structure which differentiates its keys by treating them as sequences of
characters from a finite alphabet. Each node of a trie contains a bucket for each alphabet
character and each key-value pair is stored so that the path from the root node matches the
key’s character representation. In this paper, I take the term radix trie to mean any trie which
compresses common prefixes, of which a PATRICIA trie is a variant with 2-way branching [12].
To achieve generality, my trie takes its alphabet to be the set of 4-digit binary numbers, thus
allowing any type which can be serialised as a sequence of bytes to be used as a key. This
yields 16-way branching – in contrast to a PATRICIA trie, which uses single binary digits as its
alphabet. One further difference between the radix trie implemented and other implementations
I’ve come across is that my trie allows values to be stored in internal nodes.

Ownership, Borrowing and Trees
Rust’s ownership system [9] interacts in several interesting ways with hierarchical data-structures.
The following two sections discuss my experiences with Rust’s memory management, including
some ownership related challenges and their solutions.

Positive Interactions

The core type used to implement the radix trie is a struct which contains an array of pointers
to its children.

struct TrieNode<K, V> {
key: NibbleVec,
key_value: Option<KeyValue<K, V>>,
children: [Option<Box<TrieNode<K, V>>>; BRANCH_FACTOR],
child_count: usize

}
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The NibbleVec type is a wrapper I wrote around a vector of bytes that behaves like an array
of 4-byte values (nibbles). The Box type is an owned pointer type which allows the TrieNode
type to be recursive without being infinitely sized. Rust’s box pointers are the core point of
interaction between the trie and Rust’s ownership system. In some ways, the move semantics
for owned pointers allowed me to treat the tree structure as I would in a garbage collected
language. Children can be replaced without having to free the old child, as box pointers au-
tomatically free their contents when they are overwritten or go out of scope. Compared to
the currently popular languages for systems programming, C and C++, this is a nice usability
improvement and removes the possibility of leaking memory.

Furthermore, it is comforting to have the compiler guarantee the validity and uniqueness of
all pointers. Uniqueness is useful because multiple internal pointers to a single node in a tree
structure are never desired, and validity allows code to be written without fear of forgetting
a null check. In place of null pointers, Rust’s Option<T> type makes the possibility of non-
existence explicit in the value’s type, and forbids accidentally omitting non-existence checks.
Option types have been present in functional languages like Haskell and ML for more than 20
years, but have seen relatively scarce adoption in mainstream languages due to the lack of type
system infrastructure (ADTs and pattern matching). As a systems language, Rust strives to
avoid runtime penalties for its abstractions, and to this end an Option<Box<T>> is optimised
to a raw pointer with value NULL (0) if and only if its Rust value is None [4].

Rust’s ownership system requires that the mutability of variables be defined explicitly (with
immutability being the default). This enables a style of programming where all values are
immutable and only made mutable as required. In contrast to C++’s const I found this to be
very unobtrusive, with most values remaining immutable. Tracking down mutation bugs when
most values are immutable is also more straight-forward.

Challenges

The primary challenge when constructing a hierarchy of owned pointers is how to sensibly and
efficiently deal with back-links (or rather, the lack thereof). In a tree, all nodes are owned by
their parent and no back references are permitted, as borrowing even an immutable pointer
to the parent would prevent any mutation of the parent for the life of the borrow (this is the
heart of Rust’s borrowing system). What then should be done in the case where a child needs
to update its parent? In Java or another imperative language, another approach would be to
store two (mutable) references, one to the parent and one to the current node, but this too
is disallowed by Rust’s borrow checker. Drawing inspiration from functional languages, the
solution I employed uses recursion liberally and an abstract action type that can be applied
after the initial borrow expires.

enum DeleteAction<K, V> {
Replace(Box<TrieNode<K, V>>),
Delete,
DoNothing

}

This action type captures the three possible operations that might need to be performed during
the removal of a key from the trie. Conceptually, the removal is performed from one level above
the node to be removed, with the action determined by recursively examining the child node’s
subtree.



// Recurse down the Trie working out what to do.
let (value, delete_action) = match self.children[bucket] {

None => (None, DoNothing),
Some(box ref mut existing_child) => {

// Examine the child to work out if it should be deleted...
}

};

// Apply the computed delete action.
match delete_action {

Replace(node) => {
self.children[bucket] = Some(node);
(value, DoNothing)

}

Delete => {
self.take_child(bucket);

// The removal of a child could cause this node to be replaced or deleted.
(value, self.delete_node())

}

DoNothing => (value, DoNothing)
}

The borrow of self.children[bucket] expires at the end of the let statement, allowing it
to be re-assigned or deleted when applying the delete action. After initially using boolean
values to convey deletion information, I was pleased to settle on the action enum, as it makes
the intent very clear. Rust’s support for tuples can be seen here, with the first element of
the tuple propagating the removed value up to the top. Interestingly, the call stack can be
seen as providing the necessary insulation for memory safety; it ensures that only one mutable
reference to a TrieNode<K, V> is valid at any one time. Unlike the recursive approach, us-
ing a stack data structure and a loop cannot be verified to be memory safe by the Rust compiler.

One negative side-effect of the delayed action approach is that it prevents the function from
being tail-recursive, thus destroying the opportunity to perform tail call optimisation. Within
the context of Rust this turns out not to be a problem, as tail call optimisation was deemed to
interact badly with Rust’s memory model and is unlikely to be added in the near future [2].

Parametric Mutability and Macros
Rust’s strict distinction between mutable and immutable values becomes slightly awkward when
writing functions that differ only in the mutability of their arguments or results. Following the
design of the Rust standard data-structures I set out to provide both get and get_mut methods
for my radix trie. The logic for these two methods is identical except for the sprinkling of a few
mut keywords, which present-day Rust doesn’t provide syntax to abstract over. Several Rust
developers have suggested a syntax similar to the following [5]:

fn get<~m>(&~m self, key: K) -> Option <&~m self>;



Here ~m is an imagined mutability parameter that could take the values const or mut and be
used in patterns like Some(ref ~m x).

To work around the lack of parametric mutability I turned to Rust’s macro system, which
was recently stabilised in preparation for Rust 1.0 [10]. Although generally agreed to be less
than ideal, the macro system includes several nice features including hygiene and separator-
based capturing of multiple items. As the two get functions differ only in the placement of the
mut keyword, I designed the macro to take the keyword (or lack of keyword) as an argument,
drawing inspiration from the approach used in TrieMap. The resulting macro signature looks
like this:

macro_rules! get_function {
(name: $name :ident, mutability: $($mut_ :tt)*) => {

// body
}

}

The macro takes the function name ($name) as an identifier, and zero or more arbitrary token
trees to describe the mutability. Of the current categories of parameters which can be passed to
a macro, a token tree is the only kind that accepts a mut keyword. The two macro invocations
used to generate the get functions are:

get_function!(name: get_mut, mutability: mut);
get_function!(name: get, mutability: );

The zero-or-more match is required for the immutable case where no mutability argument is
passed. Inside the body of the macro, this leads to some messy patterns (a total of 7).

match existing_child.key_value {
Some(ref $($mut_ )* kv) => {

check_keys(&kv.key, key);
Some(& $($mut_ )* kv.value)

},
None => None

}

A quirk in the macro system whereby token trees can only be used as macro arguments also
requires the entire macro body to be wrapped in an identity macro. The resulting tangle of
dollar signs and arguments broken over multiple lines is quite intimidating, but still seems better
than writing and maintaining two near-identical functions. In the future I may try to replace
the macro with a generic function that takes several higher-order functions as its arguments.
My only fear is that this approach would needlessly increase conceptual complexity relative to
shuffling mut keywords around.

Bugs and Testing
Although Rust’s memory model removes several classes of bugs, it is naturally still possible to
compile code containing logical errors. During the implementation of my radix trie I spent a lot
of time debugging problems which ended up being logical errors in the supporting NibbleVec
library, which I wrote a few months ago to support a radix trie implementation. As per the test
driven development methodology, I wrote reasonably extensive unit tests and convinced myself



of the library’s correctness. However, when it came to using the NibbleVec code in situations
where numerous methods were called sequentially, things started to go awry.

The first bug I discovered was in the split_odd method, which is meant to split a NibbleVec
at an odd index into two new nibble vectors. Recall that NibbleVec is a wrapper around a
vector of bytes, Rust’s Vec<u8> type. The bug involved the split byte not having its second half
zeroed after it was copied to the tail vector [8]. Subsequent calls to push, which uses binary-or
to mix in a new value, then resulted in stale data being combined with newly inserted data.
This created all sorts of zany bugs in the radix trie implementation which didn’t appear in
any of the NibbleVec unit tests due to the reliance on sequential operations. I argue that this
bug could have been prevented with invariant checking, or unit tests that examine the library’s
underlying data representation instead of just its interface. The invariant violated is one that
I had in mind while writing the library, and could ideally have generated a compile-time error
in a formally verified language:

self.length % 2 == 1→ self.data[self.data.len() - 1] & 0x0F == 0

Alternatively, a function to check the integrity of a NibbleVec could be written and called after
each operation in the test suite. This approach fits better with the rest of the Rust language, and
is similar to the approach I adopted in the radix trie library itself (see Trie::check_integrity).

The second bug was rather similar to the first, but involved split_even, which is meant to
split a nibble vector at an even index. An off by 1 error in some of the arithmetic lead to
the underlying data vector containing one more element than it should, resulting in corruption
upon subsequent operations. The integrity/invariant checking approach described above would
have caught this bug as well.

The lesson I’ve learnt from this is that careful testing is still required in nice languages where
everything looks correct. Unit testing in Rust is quite pleasant thanks to the built-in testing
framework and the vast number of tests that don’t have to be written. Unlike C/C++, there’s
no need to test safe Rust code for memory corruption (although unsafe blocks forfeit this
nicety). On the other end of the spectrum, Rust is unlike dynamically typed languages in that
there’s no need to test the behaviour of functions on badly typed input (for example: passing
an integer to a function that expects a string in JS or Python). Furthermore, unlike Go, Java
and other statically typed languages that permit null references, there’s no need to write test
cases involving nulls. In this respect, testing Rust code feels like testing Haskell code.

Performance
To test the performance of my implementation I benchmarked it against open source imple-
mentations written in Go and Haskell.

• Haskell: bytestring-trie 0.2.4, https://hackage.haskell.org/package/bytestring-trie

• Go: go-patricia 2.1.0, https://github.com/tchap/go-patricia

Approximately equivalent benchmarks were written in each language for each of the three main
operations; get, insert and remove. Performance metrics were then recorded using two texts as
input: The Sun Rising by John Donne and Nineteen Eighty-Four by George Orwell.

https://hackage.haskell.org/package/bytestring-trie
https://github.com/tchap/go-patricia


Rust Haskell Go
get 0.113 0.115 0.061
insert 0.143 0.067 0.284
insert-remove 0.280 - 0.350
remove 0.137* 0.110 0.066*

Table 1: Results for The Sun Rising (226 words); times are in milliseconds.

Rust Haskell Go
get 88 55 40
insert 93 409 57
insert-remove 175 - 97
remove 82* 387 38*

Table 2: Results for Nineteen Eighty-Four (103,366 words); times are in milliseconds.

The insert-remove benchmark for Go and Rust records the time to insert then remove each word
of the entire text. This was done because both the Go and Rust tries lack deep-clone imple-
mentations. The starred (*) values indicate ones estimated by subtracting an insert benchmark
from a remove benchmark (pre-rounding).

Although the Haskell library used for benchmarking (Criterion) outputs statistical information,
no attempt has been made to determine statistical significance in the Rust and Go benchmarks.
For this reason, these numbers serve only as rough estimates of performance. Most importantly
these benchmarks indicate that my trie implementation achieves performance close to that of
existing implementations. The Rust radix trie comes in second quite consistently, and with some
further performance tweaks I’m confident it could challenge the Go implementation. Profiling
revealed a lot of time spent in calls to NibbleVec::split, which could be reduced by using
slicing instead of copying when recursing.

Further Work
There are few more things to do before the library is ready for consumption by the wider Rust
community, but I’m confident I’ll be able to accomplish these things in the coming months.

• Implement the “collection views" API, to allow efficient updating after node location [7].

• Improve performance by writing a slicing method for NibbleVec.

• Provide TrieKey implementations for more in-built Rust types (macros will probably be
useful for the numeric types).

• Implement trie-specific methods for predecessor and successor location.

• Implement iterators.

Conclusion
Rust proved to be a very pleasant language for implementing data structures. Although some
features of the language required conceptual re-adjustments, the safety guarantees provided



by the ownership system are worth the effort. As one of very few modern languages without
garbage collection I hope to see Rust give C and C++ a run for their money. Rust’s mod-
ern language features in combination with its robust build system should see it succeed even
outside the systems programming space. Although the lack of parametric mutability makes
some situations slightly awkward, for a language that hasn’t reached 1.0 yet, I have very few
complaints about Rust.
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Links
• Radix Trie: https://github.com/michaelsproul/rust_radix_trie

• Nibble Vec: https://github.com/michaelsproul/rust_nibble_vec

• Benchmarks: https://github.com/michaelsproul/radix_trie_benchmarks
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